Novel non-nucleoside inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. 4. 2-Substituted dipyridodiazepinones as potent inhibitors of both wild-type and cysteine-181 HIV-1 reverse transcriptase enzymes

J Med Chem. 1995 Nov 24;38(24):4830-8. doi: 10.1021/jm00024a010.

Abstract

The major cause of viral resistance to the potent human immunodeficiency virus type 1 reverse transcriptase (RT) inhibitor nevirapine is the mutation substituting cysteine for tyrosine-181 in RT (Y181C RT). An evaluation, against Y181C RT, of previously described analogs of nevirapine revealed that the 2-chlorodipyridodiazepinone 16 is an effective inhibitor of this mutant enzyme. The detailed examination of the structure-activity relationship of 2-substituted dipyridodiazepinones presented below shows that combined activity against the wild-type and Y181C enzymes is achieved with aryl substituents at the 2-position of the tricyclic ring system. In addition, the substitution pattern at C-4, N-5, and N-11 of the dipyridodiazepinone ring system optimum for inhibition of both wild-type and Y181C RT is no longer the 4-methyl-11-cyclopropyl substitution preferred against the wild-type enzyme but rather the 5-methyl-11-ethyl (or 11-cyclopropyl) pattern. The more potent 2-substituted dipyridodiazepinones were evaluated against mutant RT enzymes (L100I RT, K103N RT, P236L RT, and E138K RT) that confer resistance to other non-nucleoside RT inhibitors, and compounds 42, 62, and 67, with pyrrolyl, aminophenyl, and aminopyridyl substituents, respectively, at the 2-position, were found to be effective inhibitors of these mutant enzymes also.

MeSH terms

  • Cell Line
  • HIV-1
  • Humans
  • Molecular Structure
  • Nevirapine
  • Pyridines / chemistry*
  • Pyridines / pharmacology
  • Reverse Transcriptase Inhibitors / chemistry*
  • Reverse Transcriptase Inhibitors / pharmacology
  • Structure-Activity Relationship

Substances

  • Pyridines
  • Reverse Transcriptase Inhibitors
  • Nevirapine